Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.978
Filtrar
1.
Technol Cancer Res Treat ; 23: 15330338241241898, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38557213

RESUMO

Introduction: In this study, we sought to develop a thermoplastic patient-specific helmet bolus that could deliver a uniform therapeutic dose to the target and minimize the dose to the normal brain during whole-scalp treatment with a humanoid head phantom. Methods: The bolus material was a commercial thermoplastic used for patient immobilization, and the holes in the netting were filled with melted paraffin. We compared volumetric-modulated arc therapy treatment plans with and without the bolus for quantitative dose distribution analysis. We analyzed the dose distribution in the region of interest to compare dose differences between target and normal organs. For quantitative analysis of treatment dose, OSLD chips were attached at the vertex (VX), posterior occipital (PO), right (RT), and left temporal (LT) locations. Results: The average dose in the clinical target volume was 6553.8 cGy (99.3%) with bolus and 5874 cGy (89%) without bolus, differing by more than 10% from the prescribed dose (6600 cGy) to the scalp target. For the normal brain, it was 3747.8 cGy (56.8%) with bolus and 5484.6 cGy (83.1%) without bolus. These results show that while the dose to the treatment target decreased, the average dose to the normal brain, which is mostly inside the treatment target, increased by more than 25%. With the bolus, the OSLD measured dose was 102.5 ± 1.2% for VX and 101.5 ± 1.9%, 95.9 ± 1.9%, and 81.8 ± 2.1% for PO, RT, and LT, respectively. In addition, the average dose in the treatment plan was 102%, 101%, 93.6%, and 80.7% for VX, PO, RT, and LT. When no bolus was administered, 59.6 ± 2.4%, 112.6 ± 1.8%, 47.1 ± 1.6%, and 53.1 ± 2.3% were assessed as OSLD doses for VX, PO, RT, and LT, respectively. Conclusion: This study proposed a method to fabricate patient-specific boluses that are highly reproducible, accessible, and easy to fabricate for radiotherapy to the entire scalp and can effectively spare normal tissue while delivering sufficient surface dose.


Assuntos
Compostos Organotiofosforados , Radioterapia de Intensidade Modulada , Humanos , Radioterapia de Intensidade Modulada/métodos , Couro Cabeludo , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Estudos de Viabilidade , Dispositivos de Proteção da Cabeça , Órgãos em Risco/efeitos da radiação
2.
Radiat Oncol ; 19(1): 45, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589961

RESUMO

BACKGROUND: Current automated planning solutions are calibrated using trial and error or machine learning on historical datasets. Neither method allows for the intuitive exploration of differing trade-off options during calibration, which may aid in ensuring automated solutions align with clinical preference. Pareto navigation provides this functionality and offers a potential calibration alternative. The purpose of this study was to validate an automated radiotherapy planning solution with a novel multi-dimensional Pareto navigation calibration interface across two external institutions for prostate cancer. METHODS: The implemented 'Pareto Guided Automated Planning' (PGAP) methodology was developed in RayStation using scripting and consisted of a Pareto navigation calibration interface built upon a 'Protocol Based Automatic Iterative Optimisation' planning framework. 30 previous patients were randomly selected by each institution (IA and IB), 10 for calibration and 20 for validation. Utilising the Pareto navigation interface automated protocols were calibrated to the institutions' clinical preferences. A single automated plan (VMATAuto) was generated for each validation patient with plan quality compared against the previously treated clinical plan (VMATClinical) both quantitatively, using a range of DVH metrics, and qualitatively through blind review at the external institution. RESULTS: PGAP led to marked improvements across the majority of rectal dose metrics, with Dmean reduced by 3.7 Gy and 1.8 Gy for IA and IB respectively (p < 0.001). For bladder, results were mixed with low and intermediate dose metrics reduced for IB but increased for IA. Differences, whilst statistically significant (p < 0.05) were small and not considered clinically relevant. The reduction in rectum dose was not at the expense of PTV coverage (D98% was generally improved with VMATAuto), but was somewhat detrimental to PTV conformality. The prioritisation of rectum over conformality was however aligned with preferences expressed during calibration and was a key driver in both institutions demonstrating a clear preference towards VMATAuto, with 31/40 considered superior to VMATClinical upon blind review. CONCLUSIONS: PGAP enabled intuitive adaptation of automated protocols to an institution's planning aims and yielded plans more congruent with the institution's clinical preference than the locally produced manual clinical plans.


Assuntos
Neoplasias da Próstata , Radioterapia de Intensidade Modulada , Masculino , Humanos , Radioterapia de Intensidade Modulada/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Bexiga Urinária , Neoplasias da Próstata/radioterapia , Órgãos em Risco
3.
Technol Cancer Res Treat ; 23: 15330338241242654, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584413

RESUMO

Purpose: Deep learning (DL) is widely used in dose prediction for radiation oncology, multiple DL techniques comparison is often lacking in the literature. To compare the performance of 4 state-of-the-art DL models in predicting the voxel-level dose distribution for cervical cancer volumetric modulated arc therapy (VMAT). Methods and Materials: A total of 261 patients' plans for cervical cancer were retrieved in this retrospective study. A three-channel feature map, consisting of a planning target volume (PTV) mask, organs at risk (OARs) mask, and CT image was fed into the three-dimensional (3D) U-Net and its 3 variants models. The data set was randomly divided into 80% as training-validation and 20% as testing set, respectively. The model performance was evaluated on the 52 testing patients by comparing the generated dose distributions against the clinical approved ground truth (GT) using mean absolute error (MAE), dose map difference (GT-predicted), clinical dosimetric indices, and dice similarity coefficients (DSC). Results: The 3D U-Net and its 3 variants DL models exhibited promising performance with a maximum MAE within the PTV 0.83% ± 0.67% in the UNETR model. The maximum MAE among the OARs is the left femoral head, which reached 6.95% ± 6.55%. For the body, the maximum MAE was observed in UNETR, which is 1.19 ± 0.86%, and the minimum MAE was 0.94 ± 0.85% for 3D U-Net. The average error of the Dmean difference for different OARs is within 2.5 Gy. The average error of V40 difference for the bladder and rectum is about 5%. The mean DSC under different isodose volumes was above 90%. Conclusions: DL models can predict the voxel-level dose distribution accurately for cervical cancer VMAT treatment plans. All models demonstrated almost analogous performance for voxel-wise dose prediction maps. Considering all voxels within the body, 3D U-Net showed the best performance. The state-of-the-art DL models are of great significance for further clinical applications of cervical cancer VMAT.


Assuntos
Aprendizado Profundo , Radioterapia de Intensidade Modulada , Neoplasias do Colo do Útero , Feminino , Humanos , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/radioterapia , Estudos Retrospectivos , Órgãos em Risco
4.
J Egypt Natl Canc Inst ; 36(1): 11, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584227

RESUMO

BACKGROUND: The moderate deep inspiratory breath hold (mDIBH) is a modality famed for cardiac sparing. Prospective studies based on this are few from the eastern part of the world and India. We intend to compare the dosimetry between mDIBH and free-breathing (FB) plans. METHODS: Thirty-two locally advanced left breast cancer patients were taken up for the study. All patients received a dose of 50 Gy in 25 fractions to the chest wall/intact breast, followed by a 10-Gy boost to the lumpectomy cavity in the case of breast conservation surgery. All the patients were treated in mDIBH using active breath coordinator (ABC). The data from the two dose volume histograms were compared regarding plan quality and the doses received by the organs at risk. Paired t-test was used for data analysis. RESULTS: The dose received by the heart in terms of V5, V10, and V30 (4.55% vs 8.39%) and mean dose (4.73 Gy vs 6.74 Gy) were statistically significant in the ABC group than that in the FB group (all p-values < 0.001). Also, the dose received by the LADA in terms of V30 (19.32% vs 24.87%) and mean dose (32.99 Gy vs 46.65 Gy) were significantly less in the ABC group. The mean treatment time for the ABC group was 20 min, while that for the free-breathing group was 10 min. CONCLUSIONS: Incorporating ABC-mDIBH for left-sided breast cancer radiotherapy significantly reduces the doses received by the heart, LADA, and left and right lung, with no compromise in plan quality but with an increase in treatment time.


Assuntos
Neoplasias da Mama , Neoplasias Unilaterais da Mama , Humanos , Feminino , Suspensão da Respiração , Neoplasias Unilaterais da Mama/radioterapia , Neoplasias da Mama/radioterapia , Estudos Prospectivos , Coração , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Órgãos em Risco
5.
Radiat Oncol ; 19(1): 39, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509540

RESUMO

BACKGROUND: At present, the implementation of intensity-modulated radiation therapy (IMRT) treatment planning for geometrically complex nasopharyngeal carcinoma (NPC) through manual trial-and-error fashion presents challenges to the improvement of planning efficiency and the obtaining of high-consistency plan quality. This paper aims to propose an automatic IMRT plan generation method through fluence prediction and further plan fine-tuning for patients with NPC and evaluates the planning efficiency and plan quality. METHODS: A total of 38 patients with NPC treated with nine-beam IMRT were enrolled in this study and automatically re-planned with the proposed method. A trained deep learning model was employed to generate static field fluence maps for each patient with 3D computed tomography images and structure contours as input. Automatic IMRT treatment planning was achieved by using its generated dose with slight tightening for further plan fine-tuning. Lastly, the plan quality was compared between automatic plans and clinical plans. RESULTS: The average time for automatic plan generation was less than 4 min, including fluence maps prediction with a python script and automated plan tuning with a C# script. Compared with clinical plans, automatic plans showed better conformity and homogeneity for planning target volumes (PTVs) except for the conformity of PTV-1. Meanwhile, the dosimetric metrics for most organs at risk (OARs) were ameliorated in the automatic plan, especially Dmax of the brainstem and spinal cord, and Dmean of the left and right parotid glands significantly decreased (P < 0.05). CONCLUSION: We have successfully implemented an automatic IMRT plan generation method for patients with NPC. This method shows high planning efficiency and comparable or superior plan quality than clinical plans. The qualitative results before and after the plan fine-tuning indicates that further optimization using dose objectives generated by predicted fluence maps is crucial to obtain high-quality automatic plans.


Assuntos
Neoplasias Nasofaríngeas , Radioterapia de Intensidade Modulada , Humanos , Carcinoma Nasofaríngeo/radioterapia , Radioterapia de Intensidade Modulada/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Órgãos em Risco , Neoplasias Nasofaríngeas/radioterapia
6.
J Cancer Res Ther ; 20(1): 383-388, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554350

RESUMO

AIM: In this study, efficacy of collapsed cone algorithm-generated intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) were evaluated for treatment of thoracic esophageal cancer. MATERIALS AND METHODS: Ten previously treated patients with VMAT were considered for evaluation. The planning parameters were evaluated in terms of max dose, mean dose, Homogeneity Index, Conformity Index for planning target volume, and organ at risk doses. Total monitor unit, treatment time, and gamma passing index were also reported. RESULTS: The target dose coverage of the VMAT and IMRT plans achieved the clinical dosimetric criteria for all ten patients in the evaluation. Under the condition of equivalent target dose distribution, the VMAT plan's Conformity Index, monitor unit, treatment time, and gamma passing index rate were superior than in the IMRT plan, and the result was statistically significant. CONCLUSION: Collapsed cone algorithm-based VMAT can have a more effective and better approach for esophageal cancer than IMRT.


Assuntos
Neoplasias Esofágicas , Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Neoplasias Esofágicas/radioterapia , Tórax , Algoritmos , Órgãos em Risco
7.
Radiat Oncol ; 19(1): 32, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459580

RESUMO

BACKGROUND: Centrally located lung tumours present a challenge because of their tendency to exhibit symptoms such as airway obstruction, atelectasis, and bleeding. Surgical resection of these tumours often requires sacrificing the lungs, making definitive radiotherapy the preferred alternative to avoid pneumonectomy. However, the proximity of these tumours to mediastinal organs at risk increases the potential for severe adverse events. To mitigate this risk, we propose a dual-method approach: deep inspiration breath-hold (DIBH) radiotherapy combined with adaptive radiotherapy. The aim of this single-centre, single-arm phase II study is to investigate the efficacy and safety of DIBH daily online adaptive radiotherapy. METHODS: Patients diagnosed with centrally located lung tumours according to the International Association for the Study of Lung Cancer recommendations, are enrolled and subjected to DIBH daily online adaptive radiotherapy. The primary endpoint is the one-year cumulative incidence of grade 3 or more severe adverse events, as classified by the Common Terminology Criteria for Adverse Events (CTCAE v5.0). DISCUSSION: Delivering definitive radiotherapy for centrally located lung tumours presents a dilemma between ensuring optimal dose coverage for the planning target volume and the associated increased risk of adverse events. DIBH provides measurable dosimetric benefits by increasing the normal lung volume and distancing the tumour from critical mediastinal organs at risk, leading to reduced toxicity. DIBH adaptive radiotherapy has been proposed as an adjunct treatment option for abdominal and pelvic cancers. If the application of DIBH adaptive radiotherapy to centrally located lung tumours proves successful, this approach could shape future phase III trials and offer novel perspectives in lung tumour radiotherapy. TRIAL REGISTRATION: Registered at the Japan Registry of Clinical Trials (jRCT; https://jrct.niph.go.jp/ ); registration number: jRCT1052230085 ( https://jrct.niph.go.jp/en-latest-detail/jRCT1052230085 ).


Assuntos
Coração , Neoplasias Pulmonares , Humanos , Suspensão da Respiração , Órgãos em Risco , Neoplasias Pulmonares/radioterapia , Pulmão , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Ensaios Clínicos Fase II como Assunto
8.
Phys Med Biol ; 69(9)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38537309

RESUMO

Objective.Predicting the probability of having the plan approved by the physician is important for automatic treatment planning. Driven by the mathematical foundation of deep learning that can use a deep neural network to represent functions accurately and flexibly, we developed a deep-learning framework that learns the probability of plan approval for cervical cancer high-dose-rate brachytherapy (HDRBT).Approach.The system consisted of a dose prediction network (DPN) and a plan-approval probability network (PPN). DPN predicts organs at risk (OAR)D2ccand CTVD90%of the current fraction from the patient's current anatomy and prescription dose of HDRBT. PPN outputs the probability of a given plan being acceptable to the physician based on the patients anatomy and the total dose combining HDRBT and external beam radiotherapy sessions. Training of the networks was achieved by first training them separately for a good initialization, and then jointly via an adversarial process. We collected approved treatment plans of 248 treatment fractions from 63 patients. Among them, 216 plans from 54 patients were employed in a four-fold cross validation study, and the remaining 32 plans from other 9 patients were saved for independent testing.Main results.DPN predicted equivalent dose of 2 Gy for bladder, rectum, sigmoidD2ccand CTVD90%with a relative error of 11.51% ± 6.92%, 8.23% ± 5.75%, 7.12% ± 6.00%, and 10.16% ± 10.42%, respectively. In a task that differentiates clinically approved plans and disapproved plans generated by perturbing doses in ground truth approved plans by 20%, PPN achieved accuracy, sensitivity, specificity, and area under the curve 0.70, 0.74, 0.65, and 0.74.Significance.We demonstrated the feasibility of developing a novel deep-learning framework that predicts a probability of plan approval for HDRBT of cervical cancer, which is an essential component in automatic treatment planning.


Assuntos
Braquiterapia , Aprendizado Profundo , Neoplasias do Colo do Útero , Feminino , Humanos , Dosagem Radioterapêutica , Braquiterapia/métodos , Neoplasias do Colo do Útero/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Órgãos em Risco
9.
Phys Med ; 120: 103331, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484461

RESUMO

PURPOSE: Within a multi-institutional project, we aimed to assess the transferability of knowledge-based (KB) plan prediction models in the case of whole breast irradiation (WBI) for left-side breast irradiation with tangential fields (TF). METHODS: Eight institutions set KB models, following previously shared common criteria. Plan prediction performance was tested on 16 new patients (2 pts per centre) extracting dose-volume-histogram (DVH) prediction bands of heart, ipsilateral lung, contralateral lung and breast. The inter-institutional variability was quantified by the standard deviations (SDint) of predicted DVHs and mean-dose (Dmean). The transferability of models, for the heart and the ipsilateral lung, was evaluated by the range of geometric Principal Component (PC1) applicability of a model to test patients of the other 7 institutions. RESULTS: SDint of the DVH was 1.8 % and 1.6 % for the ipsilateral lung and the heart, respectively (20 %-80 % dose range); concerning Dmean, SDint was 0.9 Gy and 0.6 Gy for the ipsilateral lung and the heart, respectively (<0.2 Gy for contralateral organs). Mean predicted doses ranged between 4.3 and 5.9 Gy for the ipsilateral lung and 1.1-2.3 Gy for the heart. PC1 analysis suggested no relevant differences among models, except for one centre showing a systematic larger sparing of the heart, concomitant to a worse PTV coverage, due to high priority in sparing the left anterior descending coronary artery. CONCLUSIONS: Results showed high transferability among models and low inter-institutional variability of 2% for plan prediction. These findings encourage the building of benchmark models in the case of TF-WBI.


Assuntos
Neoplasias da Mama , Radioterapia de Intensidade Modulada , Parede Torácica , Humanos , Feminino , Radioterapia de Intensidade Modulada/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Mama , Órgãos em Risco/efeitos da radiação
10.
Cancer Imaging ; 24(1): 30, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424612

RESUMO

BACKGROUND: Prostate-specific membrane antigen (PSMA) PET/CT imaging is widely used for quantitative image analysis, especially in radioligand therapy (RLT) for metastatic castration-resistant prostate cancer (mCRPC). Unknown features influencing PSMA biodistribution can be explored by analyzing segmented organs at risk (OAR) and lesions. Manual segmentation is time-consuming and labor-intensive, so automated segmentation methods are desirable. Training deep-learning segmentation models is challenging due to the scarcity of high-quality annotated images. Addressing this, we developed shifted windows UNEt TRansformers (Swin UNETR) for fully automated segmentation. Within a self-supervised framework, the model's encoder was pre-trained on unlabeled data. The entire model was fine-tuned, including its decoder, using labeled data. METHODS: In this work, 752 whole-body [68Ga]Ga-PSMA-11 PET/CT images were collected from two centers. For self-supervised model pre-training, 652 unlabeled images were employed. The remaining 100 images were manually labeled for supervised training. In the supervised training phase, 5-fold cross-validation was used with 64 images for model training and 16 for validation, from one center. For testing, 20 hold-out images, evenly distributed between two centers, were used. Image segmentation and quantification metrics were evaluated on the test set compared to the ground-truth segmentation conducted by a nuclear medicine physician. RESULTS: The model generates high-quality OARs and lesion segmentation in lesion-positive cases, including mCRPC. The results show that self-supervised pre-training significantly improved the average dice similarity coefficient (DSC) for all classes by about 3%. Compared to nnU-Net, a well-established model in medical image segmentation, our approach outperformed with a 5% higher DSC. This improvement was attributed to our model's combined use of self-supervised pre-training and supervised fine-tuning, specifically when applied to PET/CT input. Our best model had the lowest DSC for lesions at 0.68 and the highest for liver at 0.95. CONCLUSIONS: We developed a state-of-the-art neural network using self-supervised pre-training on whole-body [68Ga]Ga-PSMA-11 PET/CT images, followed by fine-tuning on a limited set of annotated images. The model generates high-quality OARs and lesion segmentation for PSMA image analysis. The generalizable model holds potential for various clinical applications, including enhanced RLT and patient-specific internal dosimetry.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Radioisótopos de Gálio , Órgãos em Risco , Distribuição Tecidual , Aprendizado de Máquina Supervisionado , Processamento de Imagem Assistida por Computador/métodos
11.
Phys Med ; 119: 103297, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38310680

RESUMO

PURPOSE: Manual recontouring of targets and Organs At Risk (OARs) is a time-consuming and operator-dependent task. We explored the potential of Generative Adversarial Networks (GAN) to auto-segment the rectum, bladder and femoral heads on 0.35T MRIs to accelerate the online MRI-guided-Radiotherapy (MRIgRT) workflow. METHODS: 3D planning MRIs from 60 prostate cancer patients treated with 0.35T MR-Linac were collected. A 3D GAN architecture and its equivalent 2D version were trained, validated and tested on 40, 10 and 10 patients respectively. The volumetric Dice Similarity Coefficient (DSC) and 95th percentile Hausdorff Distance (HD95th) were computed against expert drawn ground-truth delineations. The networks were also validated on an independent external dataset of 16 patients. RESULTS: In the internal test set, the 3D and 2D GANs showed DSC/HD95th of 0.83/9.72 mm and 0.81/10.65 mm for the rectum, 0.92/5.91 mm and 0.85/15.72 mm for the bladder, and 0.94/3.62 mm and 0.90/9.49 mm for the femoral heads. In the external test set, the performance was 0.74/31.13 mm and 0.72/25.07 mm for the rectum, 0.92/9.46 mm and 0.88/11.28 mm for the bladder, and 0.89/7.00 mm and 0.88/10.06 mm for the femoral heads. The 3D and 2D GANs required on average 1.44 s and 6.59 s respectively to generate the OARs' volumetric segmentation for a single patient. CONCLUSIONS: The proposed 3D GAN auto-segments pelvic OARs with high accuracy on 0.35T, in both the internal and the external test sets, outperforming its 2D equivalent in both segmentation robustness and volume generation time.


Assuntos
Processamento de Imagem Assistida por Computador , Órgãos em Risco , Masculino , Humanos , Órgãos em Risco/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Pelve/diagnóstico por imagem , Imageamento por Ressonância Magnética
12.
J Appl Clin Med Phys ; 25(4): e14259, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38317597

RESUMO

BACKGROUND: The treatment planning process from segmentation to producing a deliverable plan is time-consuming and labor-intensive. Existing solutions automate the segmentation and planning processes individually. The feasibility of combining auto-segmentation and auto-planning for volumetric modulated arc therapy (VMAT) for rectal cancers in an end-to-end process is not clear. PURPOSE: To create and clinically evaluate a complete end-to-end process for auto-segmentation and auto-planning of VMAT for rectal cancer requiring only the gross tumor volume contour and a CT scan as inputs. METHODS: Patient scans and data were retrospectively selected from our institutional records for patients treated for malignant neoplasm of the rectum. We trained, validated, and tested deep learning auto-segmentation models using nnU-Net architecture for clinical target volume (CTV), bowel bag, large bowel, small bowel, total bowel, femurs, bladder, bone marrow, and female and male genitalia. For the CTV, we identified 174 patients with clinically drawn CTVs. We used data for 18 patients for all structures other than the CTV. The structures were contoured under the guidance of and reviewed by a gastrointestinal (GI) radiation oncologist. The predicted results for CTV in 35 patients and organs at risk (OAR) in six patients were scored by the GI radiation oncologist using a five-point Likert scale. For auto-planning, a RapidPlan knowledge-based planning solution was modeled for VMAT delivery with a prescription of 25 Gy in five fractions. The model was trained and tested on 20 and 34 patients, respectively. The resulting plans were scored by two GI radiation oncologists using a five-point Likert scale. Finally, the end-to-end pipeline was evaluated on 16 patients, and the resulting plans were scored by two GI radiation oncologists. RESULTS: In 31 of 35 patients, CTV contours were clinically acceptable without necessary modifications. The CTV achieved a Dice similarity coefficient of 0.85 (±0.05) and 95% Hausdorff distance of 15.25 (±5.59) mm. All OAR contours were clinically acceptable without edits, except for large and small bowel which were challenging to differentiate. However, contours for total, large, and small bowel were clinically acceptable. The two physicians accepted 100% and 91% of the auto-plans. For the end-to-end pipeline, the two physicians accepted 88% and 62% of the auto-plans. CONCLUSIONS: This study demonstrated that the VMAT treatment planning technique for rectal cancer can be automated to generate clinically acceptable and safe plans with minimal human interventions.


Assuntos
Radioterapia de Intensidade Modulada , Neoplasias Retais , Humanos , Masculino , Feminino , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos , Dosagem Radioterapêutica , Neoplasias Retais/radioterapia , Reto , Órgãos em Risco , Planejamento da Radioterapia Assistida por Computador/métodos
13.
Med Phys ; 51(3): 2187-2199, 2024 Mar.
Artigo em Italiano | MEDLINE | ID: mdl-38319676

RESUMO

BACKGROUND: Efficient and accurate delineation of organs at risk (OARs) is a critical procedure for treatment planning and dose evaluation. Deep learning-based auto-segmentation of OARs has shown promising results and is increasingly being used in radiation therapy. However, existing deep learning-based auto-segmentation approaches face two challenges in clinical practice: generalizability and human-AI interaction. A generalizable and promptable auto-segmentation model, which segments OARs of multiple disease sites simultaneously and supports on-the-fly human-AI interaction, can significantly enhance the efficiency of radiation therapy treatment planning. PURPOSE: Meta's segment anything model (SAM) was proposed as a generalizable and promptable model for next-generation natural image segmentation. We further evaluated the performance of SAM in radiotherapy segmentation. METHODS: Computed tomography (CT) images of clinical cases from four disease sites at our institute were collected: prostate, lung, gastrointestinal, and head & neck. For each case, we selected the OARs important in radiotherapy treatment planning. We then compared both the Dice coefficients and Jaccard indices derived from three distinct methods: manual delineation (ground truth), automatic segmentation using SAM's 'segment anything' mode, and automatic segmentation using SAM's 'box prompt' mode that implements manual interaction via live prompts during segmentation. RESULTS: Our results indicate that SAM's segment anything mode can achieve clinically acceptable segmentation results in most OARs with Dice scores higher than 0.7. SAM's box prompt mode further improves Dice scores by 0.1∼0.5. Similar results were observed for Jaccard indices. The results show that SAM performs better for prostate and lung, but worse for gastrointestinal and head & neck. When considering the size of organs and the distinctiveness of their boundaries, SAM shows better performance for large organs with distinct boundaries, such as lung and liver, and worse for smaller organs with less distinct boundaries, like parotid and cochlea. CONCLUSIONS: Our results demonstrate SAM's robust generalizability with consistent accuracy in automatic segmentation for radiotherapy. Furthermore, the advanced box-prompt method enables the users to augment auto-segmentation interactively and dynamically, leading to patient-specific auto-segmentation in radiation therapy. SAM's generalizability across different disease sites and different modalities makes it feasible to develop a generic auto-segmentation model in radiotherapy.


Assuntos
Aprendizado Profundo , Radioterapia (Especialidade) , Masculino , Humanos , Inteligência Artificial , Redes Neurais de Computação , Tomografia Computadorizada por Raios X/métodos , Órgãos em Risco , Planejamento da Radioterapia Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos
14.
Phys Med Biol ; 69(7)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38422544

RESUMO

Objective. An algorithm was developed for automated positioning of lattice points within volumetric modulated arc lattice radiation therapy (VMAT LRT) planning. These points are strategically placed within the gross tumor volume (GTV) to receive high doses, adhering to specific separation rules from adjacent organs at risk (OARs). The study goals included enhancing planning safety, consistency, and efficiency while emulating human performance.Approach. A Monte Carlo-based algorithm was designed to optimize the number and arrangement of lattice points within the GTV while considering placement constraints and objectives. These constraints encompassed minimum spacing between points, distance from OARs, and longitudinal separation along thez-axis. Additionally, the algorithm included an objective to permit, at the user's discretion, solutions with more centrally placed lattice points within the GTV. To validate its effectiveness, the automated approach was compared with manually planned treatments for 24 previous patients. Prior to clinical implementation, a failure mode and effects analysis (FMEA) was conducted to identify potential shortcomings.Main results.The automated program successfully met all placement constraints with an average execution time (over 24 plans) of 0.29 ±0.07 min per lattice point. The average lattice point density (# points per 100 c.c. of GTV) was similar for automated (0.725) compared to manual placement (0.704). The dosimetric differences between the automated and manual plans were minimal, with statistically significant differences in certain metrics like minimum dose (1.9% versus 1.4%), D5% (52.8% versus 49.4%), D95% (7.1% versus 6.2%), and Body-GTV V30% (20.7 c.c. versus 19.7 c.c.).Significance.This study underscores the feasibility of employing a straightforward Monte Carlo-based algorithm to automate the creation of spherical target structures for VMAT LRT planning. The automated method yields similar dose metrics, enhances inter-planner consistency for larger targets, and requires fewer resources and less time compared to manual placement. This approach holds promise for standardizing treatment planning in prospective patient trials and facilitating its adoption across centers seeking to implement VMAT LRT techniques.


Assuntos
Algoritmos , Benchmarking , Humanos , Estudos Prospectivos , Método de Monte Carlo , Órgãos em Risco
15.
J Appl Clin Med Phys ; 25(3): e14310, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38373283

RESUMO

PURPOSE: Radiation therapy (RT) of pediatric brain cancer is known to be associated with long-term neurocognitive deficits. Although target and organs-at-risk (OARs) are contoured as part of treatment planning, other structures linked to cognitive functions are often not included. This paper introduces a novel automatic segmentation tool specifically designed for the unique challenges posed by pediatric patients undergoing brain RT, as well as its seamless integration into the existing clinical workflow. METHODS AND MATERIALS: Images of 47 pediatric brain cancer patients aged 1 to 20 years old and 33 two-year-old healthy infants were used to train a vision transformer, UNesT, for the segmentation of five brain OARs. The trained model was then incorporated to clinical workflow via DICOM connections between a treatment planning system (TPS) and a server hosting the trained model such that scans are sent from TPS to the server, automatically segmented, and sent back to TPS for treatment planning. RESULTS: The proposed automatic segmentation framework achieved a median dice similarity coefficient of 0.928 (frontal white matter), 0.908 (corpus callosum), 0.933 (hippocampi), 0.819 (temporal lobes), and 0.960 (brainstem) with a mean ± SD run time of 1.8 ± 0.67 s over 20 test cases. CONCLUSIONS: The pediatric brain segmentation tool showed promising performance on five OARs linked to neurocognitive functions and can easily be extended for additional structures. The proposed integration to the clinic enables easy access to the tool from clinical platforms and minimizes disruption to existing workflow while maximizing its benefits.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Humanos , Criança , Lactente , Pré-Escolar , Adolescente , Adulto Jovem , Adulto , Fluxo de Trabalho , Processamento de Imagem Assistida por Computador/métodos , Órgãos em Risco , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Encéfalo/diagnóstico por imagem
16.
Technol Cancer Res Treat ; 23: 15330338241234788, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389426

RESUMO

Proton radiotherapy may be a compelling technical option for the treatment of breast cancer due to its unique physical property known as the "Bragg peak." This feature offers distinct advantages, promising superior dose conformity within the tumor area and reduced radiation exposure to surrounding healthy tissues, enhancing the potential for better treatment outcomes. However, proton therapy is accompanied by inherent challenges, primarily higher costs and limited accessibility when compared to well-developed photon irradiation. Thus, in clinical practice, it is important for radiation oncologists to carefully select patients before recommendation of proton therapy to ensure the transformation of dosimetric benefits into tangible clinical benefits. Yet, the optimal indications for proton therapy in breast cancer patients remain uncertain. While there is no widely recognized methodology for patient selection, numerous attempts have been made in this direction. In this review, we intended to present an inspiring summarization and discussion about the current practices and exploration on the approaches of this treatment decision-making process in terms of treatment-related side-effects, tumor control, and cost-efficiency, including the normal tissue complication probability (NTCP) model, the tumor control probability (TCP) model, genomic biomarkers, cost-effectiveness analyses (CEAs), and so on. Additionally, we conducted an evaluation of the eligibility criteria in ongoing randomized controlled trials and analyzed their reference value in patient selection. We evaluated the pros and cons of various potential patient selection approaches and proposed possible directions for further optimization and exploration. In summary, while proton therapy holds significant promise in breast cancer treatment, its integration into clinical practice calls for a thoughtful, evidence-driven strategy. By continuously refining the patient selection criteria, we can harness the full potential of proton radiotherapy while ensuring maximum benefit for breast cancer patients.


Assuntos
Neoplasias da Mama , Terapia com Prótons , Feminino , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/radioterapia , Órgãos em Risco/efeitos da radiação , Seleção de Pacientes , Terapia com Prótons/efeitos adversos , Terapia com Prótons/métodos , Prótons , Planejamento da Radioterapia Assistida por Computador/métodos
17.
Phys Med Biol ; 69(7)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38373350

RESUMO

Objective. In head-and-neck cancer intensity modulated proton therapy, adaptive radiotherapy is currently restricted to offline re-planning, mitigating the effect of slow changes in patient anatomies. Daily online adaptations can potentially improve dosimetry. Here, a new, fully automated online re-optimization strategy is presented. In a retrospective study, this online re-optimization approach was compared to our trigger-based offline re-planning (offlineTBre-planning) schedule, including extensive robustness analyses.Approach. The online re-optimization method employs automated multi-criterial re-optimization, using robust optimization with 1 mm setup-robustness settings (in contrast to 3 mm for offlineTBre-planning). Hard planning constraints and spot addition are used to enforce adequate target coverage, avoid prohibitively large maximum doses and minimize organ-at-risk doses. For 67 repeat-CTs from 15 patients, fraction doses of the two strategies were compared for the CTVs and organs-at-risk. Per repeat-CT, 10.000 fractions with different setup and range robustness settings were simulated using polynomial chaos expansion for fast and accurate dose calculations.Main results. For 14/67 repeat-CTs, offlineTBre-planning resulted in <50% probability ofD98%≥ 95% of the prescribed dose (Dpres) in one or both CTVs, which never happened with online re-optimization. With offlineTBre-planning, eight repeat-CTs had zero probability of obtainingD98%≥ 95%Dpresfor CTV7000, while the minimum probability with online re-optimization was 81%. Risks of xerostomia and dysphagia grade ≥ II were reduced by 3.5 ± 1.7 and 3.9 ± 2.8 percentage point [mean ± SD] (p< 10-5for both). In online re-optimization, adjustment of spot configuration followed by spot-intensity re-optimization took 3.4 min on average.Significance. The fast online re-optimization strategy always prevented substantial losses of target coverage caused by day-to-day anatomical variations, as opposed to the clinical trigger-based offline re-planning schedule. On top of this, online re-optimization could be performed with smaller setup robustness settings, contributing to improved organs-at-risk sparing.


Assuntos
Neoplasias de Cabeça e Pescoço , Terapia com Prótons , Radioterapia de Intensidade Modulada , Humanos , Terapia com Prótons/efeitos adversos , Terapia com Prótons/métodos , Estudos Retrospectivos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias de Cabeça e Pescoço/radioterapia , Órgãos em Risco , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos
18.
Radiol Med ; 129(3): 515-523, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38308062

RESUMO

PURPOSE: To improve the workflow of total marrow and lymphoid irradiation (TMLI) by enhancing the delineation of organs at risk (OARs) and clinical target volume (CTV) using deep learning (DL) and atlas-based (AB) segmentation models. MATERIALS AND METHODS: Ninety-five TMLI plans optimized in our institute were analyzed. Two commercial DL software were tested for segmenting 18 OARs. An AB model for lymph node CTV (CTV_LN) delineation was built using 20 TMLI patients. The AB model was evaluated on 20 independent patients, and a semiautomatic approach was tested by correcting the automatic contours. The generated OARs and CTV_LN contours were compared to manual contours in terms of topological agreement, dose statistics, and time workload. A clinical decision tree was developed to define a specific contouring strategy for each OAR. RESULTS: The two DL models achieved a median [interquartile range] dice similarity coefficient (DSC) of 0.84 [0.71;0.93] and 0.85 [0.70;0.93] across the OARs. The absolute median Dmean difference between manual and the two DL models was 2.0 [0.7;6.6]% and 2.4 [0.9;7.1]%. The AB model achieved a median DSC of 0.70 [0.66;0.74] for CTV_LN delineation, increasing to 0.94 [0.94;0.95] after manual revision, with minimal Dmean differences. Since September 2022, our institution has implemented DL and AB models for all TMLI patients, reducing from 5 to 2 h the time required to complete the entire segmentation process. CONCLUSION: DL models can streamline the TMLI contouring process of OARs. Manual revision is still necessary for lymph node delineation using AB models.


Assuntos
Aprendizado Profundo , Humanos , Planejamento da Radioterapia Assistida por Computador , Medula Óssea/diagnóstico por imagem , Irradiação Linfática , Fluxo de Trabalho , Órgãos em Risco/efeitos da radiação
19.
Technol Cancer Res Treat ; 23: 15330338241229367, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38297814

RESUMO

Objective: To investigate the dosimetric effects of using individualized silicone rubber (SR) bolus on the target area and organs at risk (OARs) during postmastectomy radiotherapy (PMRT), as well as evaluate skin acute radiation dermatitis (ARD). Methods: A retrospective study was performed on 30 patients with breast cancer. Each patient was prepared with an individualized SR bolus of 3 mm thickness. Fan-beam computed tomography (FBCT) was performed at the first and second fractions, and then once a week for a total of 5 times. Dosimetric metrics such as homogeneity index (HI), conformity index (CI), skin dose (SD), and OARs including the heart, lungs, and spinal cord were compared between the original plan and the FBCTs. The acute side effects were recorded. Results: In targets' dosimetric metrics, there were no significant differences in Dmean and V105% between planning computed tomography (CT) and actual treatments (P > .05), while the differences in D95%, V95%, HI, and CI were statistically significant (P < .05). In OARs, there were no significant differences between the Dmean, V5, and V20 of the affected lung, V5 of the heart and Dmax of the spinal cord (P > .05) except the V30 of affected lung, which was slightly lower than the planning CT (P < .05). In SD, both Dmax and Dmean in actual treatments were increased than plan A, and the difference was statistically significant (P < .05), while the skin-V20 and skin-V30 has no difference. Among the 30 patients, only one patient had no skin ARD, and 5 patients developed ARD of grade 2, while the remaining 24 patients were grade 1. Conclusion: The OR bolus showed good anastomoses and high interfraction reproducibility with the chest wall, and did not cause deformation during irradiation. It ensured accurate dose delivery of the target and OARs during the treatment, which may increase SD by over 101%. In this study, no cases of grade 3 skin ARD were observed. However, the potential of using OR bolus to reduce grade 1 and 2 skin ARD warrants further investigation with a larger sample size.


Assuntos
Neoplasias da Mama , Dermatite , Radioterapia de Intensidade Modulada , Humanos , Feminino , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Elastômeros de Silicone , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Estudos Retrospectivos , Reprodutibilidade dos Testes , Mastectomia/efeitos adversos , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos , Tomografia Computadorizada por Raios X , Dermatite/cirurgia , Órgãos em Risco/efeitos da radiação
20.
Radiography (Lond) ; 30(2): 673-680, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364707

RESUMO

INTRODUCTION: This paper presents a novel approach to automate the segmentation of Organ-at-Risk (OAR) in Head and Neck cancer patients using Deep Learning models combined with Ensemble Learning techniques. The study aims to improve the accuracy and efficiency of OAR segmentation, essential for radiotherapy treatment planning. METHODS: The dataset comprised computed tomography (CT) scans of 182 patients in DICOM format, obtained from an institutional image bank. Experienced Radiation Oncologists manually segmented seven OARs for each scan. Two models, 3D U-Net and 3D DenseNet-FCN, were trained on reduced CT scans (192 × 192 x 128) due to memory limitations. Ensemble Learning techniques were employed to enhance accuracy and segmentation metrics. Testing was conducted on 78 patients from the institutional dataset and an open-source dataset (TCGA-HNSC and Head-Neck Cetuximab) consisting of 31 patient scans. RESULTS: Using the Ensemble Learning technique, the average dice similarity coefficient for OARs ranged from 0.990 to 0.994, indicating high segmentation accuracy. The 95% Hausdorff distance (mm) ranged from 1.3 to 2.1, demonstrating precise segmentation boundaries. CONCLUSION: The proposed automated segmentation method achieved efficient and accurate OAR segmentation, surpassing human expert performance in terms of time and accuracy. IMPLICATIONS FOR PRACTICE: This approach has implications for improving treatment planning and patient care in radiotherapy. By reducing manual segmentation reliance, the proposed method offers significant time savings and potential improvements in treatment planning efficiency and precision for head and neck cancer patients.


Assuntos
Neoplasias de Cabeça e Pescoço , Órgãos em Risco , Humanos , Órgãos em Risco/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Tomografia Computadorizada por Raios X , Planejamento da Radioterapia Assistida por Computador/métodos , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...